
class Config::DataLang::Refine

Refine use of some configuration loaded with config loaders such as
Config::TOML

Table of Contents
1 Synopsis
2 Description
3 Attributes
3.1 config
4 Methods
4.1 new
4.2 refine
4.3 refine-str
4.4 merge-hash
4.5 perl

class Config::DataLang::Refine { ... }

Synopsis
With the following piece of code

use Config::DataLang::Refine;

my Config::DataLang::Refine $c .= new(:config-name<myConfig.toml>);

5. my Hash $hp1 = $c.refine(<options plugin1 test>);
my Hash $hp2 = $c.refine(<options plugin1 test>, :filter);
my Array $ap3 = $c.refine-str(<options plugin1 deploy>, :filter);
my Array $ap4 = $c.refine-str(<options plugin2 deploy>, :filter);

And the following config file in myConfig.toml

[options]
 key1 = 'val1'
 key1a = true

5. [options.plugin1]
 key2 = 'val2'

[options.plugin1.test]
 key1 = false

10. key2 = 'val3'

[options.plugin2.deploy]
 key3 = 'val3'
 key4 = [1, 2, 3, 4]

Will get you the following as if the variables were set like

All found values
$hp1 = ${:!key1, :key1a, :key2("val3")};

False booleans filtered out

5. $hp2 = ${:key1a, :key2("val3")};

Note that there is no deploy for plugin1
$ap3 = $["key1=val1", "key1a", "key2=val2"];

10. # Arrays become comma separated lists by default
$ap4 = $["key1=val1", "key1a", "key3=val3", "key4=1,2,3,4"]

A sample config from the MongoDB project to test several server setups is

[mongod]
 journal = false
 fork = true
 smallfiles = true

5. oplogSize = 128
 logappend = true

Configuration for Server 1
[mongod.s1]

10. logpath = './Sandbox/Server1/m.log'
 pidfilepath = './Sandbox/Server1/m.pid'
 dbpath = './Sandbox/Server1/m.data'
 port = 65010

15. [mongod.s1.replicate1]
 replSet = 'first_replicate'

[mongod.s1.replicate2]
 replSet = 'second_replicate'

20.
[mongod.s1.authenticate]
 auth = true

Now, to get run options to start server 1 one does the following;

my Array $opts = $c.refine-str(<mongod s1 replicate1>, :C-UNIX-OPTS-T2);

Output
--nojournal, --fork, --smallfiles, --oplogSize=128, --logappend,

5. # --logpath='./Sandbox/Server1/m.log', --pidfilepath='./Sandbox/Server1/m.pid',
--dbpath='./Sandbox/Server1/m.data', --port=65010, --replSet=first_replicate

Easy to run the server now;

my Proc $proc = shell(('/usr/bin/mongod', |@$opts).join(' '));

Description
This class is used for getting configuration data in such a way that several levels are
accumulated into a single level Hash or Array. The top level of the configuration should always
be a Hash (at this moment).

Attributes

config

has Hash:D $.config is rw = {};

Stored configuration. Can be set and retrieved directly from object.

my $c = Config::DataLang::Refine.new;
$c.config<some-key><other-key>;

Methods

new

submethod BUILD (
 Str :$config-name,
 Bool :$merge = False,
 Array :$locations = [],

5. Str :$data-module = 'Config::TOML',
 Hash :$other-config = {},
 Bool :$trace = False
)

Reads configuration text from a file pointed to by :config-name. The file will first be searched for
in the current directory. Then, if not found, tries to read the hidden variant (on unixes) which is the
name with a dot ('.') prefixed to the file. If that fails too it tries yet another file (also hidden) located
in the home directory of the user. At last the method throws an exception if no files are found. If
:config-name is not defined the program name is taken where the extension is substituted by the
proper name for the configuration language.

When :locations is defined the array will be used as extra paths to search for the config file.
Example paths to add are /etc on unixes or C:/Program Files/MyApp on windows.

When :config-name is a relative or absolute path to a config file, then the basename is taken and
the path to the file is pushed on the :locations array.

:merge is used to merge all the files together starting with the file in the users first and following
paths from :locations, Then the one from the home directory if found. Then the options from the
hidden local file if found and finishing with the visible local file found. An exception will be thrown
when the resulting config has no elements.

:trace. When True, the search will show what files are loaded.

The data languages such as Config::TOML might throw exceptions when it fails to parse the
configuration text.

Setup Search

Nothing set :config-name set to program name. Say p.pl6 so config will be p.toml
because :data-module is by default Config::TOML. Search; p.toml, .p.toml,
<home-dir>/.p.toml

:data-
module=JSON::Fast

Same as above except extension is .json. Search; p.json, .p.json, <home-
dir>/.p.json

:config-name=x.cfg Search; x.cfg, .x.cfg, <home-dir>/.x.cfg

:config-
name=../pqr/x.cfg

While shown here as a relative path, the path will be made absolute. Search;
x.cfg, .x.cfg, <home-dir>/.x.cfg, ../pqr/x.cfg

:config-name=x.cfg
:locations=[/etc,
/opt/etc]

Search; x.cfg, .x.cfg, <home-dir>/.x.cfg, /etc/x.cfg /opt/etc/x.cfg

When :merge is used the search is started at the end of the list ending at the first file.

For :data-module the modules Config::TOML and JSON::Fast are recognized.

:other-config can be used when the caller has already a config of its own. This will be modified by
subsequent config loads. The :merge is flipped to True. With this, it is possible to repeat the
config loads with configs from previous loads.

refine

method refine (*@key-list, Bool :$filter = False --> Hash)

Processes data in the config using the keys from the @key-list. The method returns a single level
Hash.

The process starts with taking the first key from the list and gathers all pairs ignoring pairs of
which the value is a Hash. Then it descends in the config using the second key. This goes on
until the last key is used. The process stops when a key does not exist on some level.

A simple filter is used on the results if :filter is set. All key/value pairs are removed from the result
where the value is a Bool and is False or any value that is undefined.

type :!filter :filter

Bool :k :k

:!k <removed>

Any :k => v :k => v

refine-str

method refine-str (
 *@key-list,
 Str :$glue = ',',
 Bool :$filter = False

5. StrMode :$str-mode = C-URI-OPTS-T1
 --> Array
)

Each string is pushed on the array which is returned. The :glue is the string used to join elements
of an array, this is a ',' by default.

type :!filter :filter

Bool k=True k=True

k=False <removed>

Array k=1,2,3 k=1,2,3

spaced text k='v' k='v'

Any k=v k=v

type :!filter :filter

Bool k=True k=True

k=False <removed>

Array k=1,2,3 k=1,2,3

Any k=v k=v

The results from C-URI-OPTS-T2 can be used to form uri strings when joined together with a '&'
character. All strings will be encoded for the first 128 characters of the ascii table.

type :!filter :filter

Bool --k --k

--nok <removed>

Array --k=1,2,3 --k=1,2,3

text with '`' --k=v --k=v

spaced text --k='v' --k='v'

Any --k=v --k=v

Note 1: The values are also checked for backticks(`) because in Unix these can hold other
commands. However, a command can contain spaces which will then be quoted. To prevent that,
the value is checked for an even number of backticks. When there are spaces in the value
outside these backticks the user must add the quotes manually if necessary.

Note 2: All single letter keys get only one dash in front of the option key like -k or -k=v.

Note 3 Mode C-UNIX-OPTS-T2 does the same as C-UNIX-OPTS-T1 but gathers all single

character keys without values together prefixed with a dash. E.g. --key, -l, -m, -t=1 becomes --key,
-lm, -t=1

Note 4 Mode C-UNIX-OPTS-T3 also does the same as C-UNIX-OPTS-T1 but ignores the filter
option. The result of False booleans will then be --/$k instead of --no$k. This is recognized by
perl6 as input to the MAIN sub.

merge-hash

multi method merge-hash (Hash:D $h1, Hash:D $h2 --> Hash)

Returns a hash which is a merge from $h1 and $h2.

multi method merge-hash (Hash:D $h2 --> Hash)

Same as above but the merge will be with the internal config of the object.

perl

method perl (Hash :$h --> Str)

Show the configuration stored in this class or, when defined, $h, given as a named attribute.

Generated using Pod::Render, Pod::To::HTML, ©Google prettify

	class Config::DataLang::Refine
	Table of Contents

	Synopsis
	Description
	Attributes
	config

	Methods
	new
	refine
	refine-str
	merge-hash
	perl

